
DIRECT ADAPTIVE CONTROL OF A PUMA 560

INDUSTRIAL ROBOT

Homayoun Seraji, Thomas Lee

Jet Propulsion Laboratory

California Institute of Technology

4800 Oak Grove Drive

Pasadena, California 91109, USA

Michel Delpech

DRT/TVE/EA

Centre National d'Etudes Spatiales
Toulouse 31055

France

Abstract

The paper describes the implementation and experimental validation of a new direct

adaptive control scheme on a PUMA 560 industrial robot. The testbed facility consists of a

Unimation PUMA 560 six-jointed robot and controller, and a DEC MicroVAX II computer

which hosts the RCCL (Robot Control "C" Library) software. The control algorithm is

implemented on the MicroVAX which acts as a digital controller for the PUMA robot,

and the Unimation controller is effectively bypassed and used merely as an I/O device to

interface the MicroVAX to the joint motors. The control algorithm for each robot joint

consists of an auxiliary signal generated by a constant-gain PID controller, and an adaptive

position-velocity (PD) feedback controller with adjustable gains. The adaptive independent

joint controllers compensate for the inter-joint couplings and achieve accurate trajectory

tracking without the need for the complex dynamic model and parameter values of the

robot. Extensive experimental results on PUMA joint control are presented to confirm the

feasibility of the proposed scheme, in spite of strong interactions between joint motions.

Experimental results validate the capabilities of the proposed control scheme. The control

scheme is extremely simple and computationally very fast for concurrent processing with

high sampling rates.

1. Introduction

During the past decade, the control of robot manipulators has been the focus of consid-

erable research, and many different control schemes have been suggested in the literature.

With a few exceptions, all existing schemes are tested on manipulators through computer

simulations only, often using the popular two-link arm paradigm. Although the simulations

are useful for illustration and proof-of-concept, practical issues such as effect of friction,

limitation on controller gains, and sampling rate constraint are often neglected. Despite the

large number of proposed manipulator control schemes, the number of schemes that have ac-

tually been experimentally evaluated on manipulators, and particularly on industrial robots,

is very small today.

This paper describes the implementation and experimental validation of a newly de-

veloped direct adaptive control scheme [1,2] on a six-jointed PUMA 560 industrial robot.

The control scheme has a decentralized structure and consists of a number of simple local

feedback controllers. Each local controller consists of an auxiliary signal generated by a

constant-gain PID controller, and an adaptive position-velocity (PD) feedback controller

11

whosegains are updated on-line in real time. The control scheme is implemented on a Mi-

croVAX II computer using the RCCL software, and generates the control signals that drive

the PUMA joint motors directly. This simple control scheme is not based on the complex

PUMA dynamic model and is therefore implemented at a high sampling rate and yields a
good tracking performance.

The paper is structured as follows. In Section 2, an overview of the design theory

for adaptive joint controllers is given. The descriptions of the testbed facility at JPL and

the RCCL software are given in Section 3. Section 4 discusses the experimental results

on simultaneous control of all six joint angles of the PUMA 560 industrial robot. The

conclusions drawn from the paper are discussed in Section 5.

2. Theory Overview

In this section, the design theory for direct adaptive control of manipulators is outlined.

The proposed control scheme has a decentralized structure, where each manipulator joint is

controlled independently of the others by use of a local feedback controller. Therefore, the

dynamics of each joint will be considered separately.

Consider a robot manipulator with the rt joint angles # = [01,82,..., On] and the cor-

responding n joint torques T = [7"1, T2,..., Tn]. The dynamic model of the z"th manipulator

joint which relates 0i to T_ can be represented by the second-order nonlinear differential

equation

m,,(O)Oi + _ mii(O)Oj + n,(O,O) + 9i(0) + h,(Oi) = Ti (1)

where rn O. is the (i,j) th element of the inertia matrix, and hi, gi, hi are the i th elements of

the Coriolis/centrifugal vector, gravity vector, and friction vector, respectively. The terms

in equation (1) are highly, complicated nonlinear functions of the manipulator configuration

0, the speed of motion 8, and the payload inertial parameters. The manipulator control

problem is to generate the joint torques Ti(t), for i = 1,... ,n, such that the joint angles

0_(t) track some desired trajectories 0di(t) as closely as possible.

In the proposed decentralized control scheme, the i th joint is controlled by the local

adaptive feedback control law [2]

T,(t) = f (t) + kp (t)e,(t)+ (2)

as shown in Figure 1, where ei(t) = O_(t) - Oi(t) and _i(t) = 0di(t) -/_,(t) are the position

and velocity tracking-errors, and the controller terms are given by

Weighted tracking-error

r,(t) = wpiei(t) + w,i_i(t) (3)

Auxiliary signal

f (t) = f (0) + f[ri(t)dt + pir,(t) (4)

12

Position feedback gain

k_,(t)= k_(o) + _, ['
Jo

ri(t)ei(t)dt + _iri(t)ei(t) (5)

Velocity feedback gain

L'k_,(t) = ko,(o)+.y, r,(t)_,(t)dt + a,r,(t)_,(t) (6)

In equations (3)-(6), {_i,_i,"/,} are positive scalar integral adaptation gains, {pi,_i,,_i}

are non-negative scalar proportional adaptation gains, and {Wpi,W,,i} are scalar positive

weighting factors of the position and velocity tracking-errors.

From the implementation viewpoint, the auxiliary signal]'i(t) can be generated by a

constant-gain PID feedback controller acting on the position tracking-error el(t), since from

equations (3) and (4), f_(t) can be expressed as

/o'fi(t) = fi(0) + p, [wpiei(t) + w_i_(t)] + 8i [wpiei(t) + w_i_(t)] dt

/o'= fi(O) + [piwpi + &w_,] ei(t) + [piw_i] _i(t) + [Siwp_] ei(t)dt (7)

Hence, the joint torque (2) can be generated by the adaptive PID feedback controller

Ti(t) = Ti(0) + [k-_(t) + "kl, dt + "kvi(t)-_]ei(t) (8)

where kpi(t) = kpi(t) + piwpi + 5iw_i, kxi = 6iwpi, and k_i(t) = koi(t) + p_wv_ are the

adjustable BID gains and Ti(0) = fi(0) is the initial joint torque.

The dynamics of manipulator joints are highly coupled, as can be seen from equation

(1). The local control law (2) for each joint compensates, to a large extent, for the static and

dynamic cross-couplings that exist between the manipulator joints. For fast simultaneous

motion of all joints, the inter-joint coupling effects can be significant and may cause insta-

bility under the decentralized adaptive control scheme (2)-(6). In such cases, the controller

adaptation laws are modified slightly in order to achieve robust stability in the presence of

the unmodeled cross-coupling effects. A popular approach is the "a-modification" method

[3], which yields the adaptation laws

/0' /0'fi(t) = fi(0) + 8i ri(t)dt + piri(t) - ai fi(t)dt (9)

/o' /o'k_(t) = _,_(0) + _ r_(t)e_(t)dt + B_r_(t)e,(t) - a_ k_(t)dt (10)

/o' /o'k_(t) = k_(O) +._ r_(t)_(t)dt +)_r_(t)_(t) -a_ k,,_(t)dt (11)

13

where a_ is a positive scalar design parameter. The a-modified adaptation laws produce a

non-zero residual tracking-error of 0(v/a_) but guarantee stability in the presence of inter-

joint couplings.

It is seen that the controller adaptation laws (9)-(11) and the control action (2) are based

entirely on the observed manipulator performance through 0(t) and 04(t} rather than on the

manipulator dynamic model (1). As a consequence, the knowledge of either the complex

dynamic model and the parameter values of the manipulator or the inertial parameters of

the payload is not required in the control law formulation. Thus, the adaptive controllers

can cope with uncertainties or variations in the manipulator or the payload parameters.

This is a highly desirable feature in practical applications, where some dynamic effects such

as friction can not be modeled accurately and the payload mass can vary substantially.

Furthermore, the proposed decentralized control scheme is extremely fast computationally,

since the controller gains are generated on-line in real time by simple adaptation laws,

and hence the control action can be evaluated very rapidly. Due to its simplicity and

decentralized structure, the proposed scheme can be implemented on parallel processors

for distributed concurrent computing with high sampling rates, yielding improved dynamic

performance.

3. Description of Testbed Facility

In this section, we describe the robotic testbed facility at the Jet Propulsion Laboratory.

The testbed facility at the JPL Robotics Research Laboratory consists of a six-jointed

Unimation PUMA 560 robot and controller, and a DEC MicroVAX II computer, as shown

in the functional diagram of Figure 2. The major components of the Unimation controller

are the LSI 11/73 microcomputer, six 6503 microprocessor boards (one per joint), and se-

rial/parallel interface cards. The MicroVAX II hosts the RCCL (Robot Control _C" Library)

software, which was developed by Hayward and Lloyd at Purdue and McGill Universities

[4,5]. The original version runs on a DEC VAX 750 computer, and later the software is

ported to a DEC MicroVAX II running UNIX 4.3 BSD operating system. The organization

of the robot software is reflected in the control hierarchy diagram illustrated in Figure 2.

The complete software resides on two different pieces of computing hardware. A MicroVAX

computer, which plays the supervisory role, hosts a two-level software written in the _C _

language. The lower level, called Robot Control Interface (RCI), provides the programmer

a facility to write real-time control procedures. It serves as a substrate to the higher level

(RCCL), which gets its collective name from the robot software. The higher level con-

sists of routines to specify a robot trajectory in Cartesian coordinates. The second piece

of hardware is the Unimation controller hosting an LSI 11/73 processor on which an I/O

control program called _moper" executes to monitor communication between the 6503 joint

microprocessors and the RCI control level.

At the lowest level of the hierarchy, robot servoing is achieved by the 6503 joint mi-

croprocessors. The processor has two different operational modes: position and current.

In position mode, the 6503 processor accepts a position setpoint from the LSI 11/73 and

servos to the desired position by executing a control code written in the assembly language

14

that is stored in ROM (this servo code was developed by the Unimation Corporation). In

this mode, the control task, triggered by a hardware clock, executes approximately at the

sampling rate of 1 KHz. In current mode, each input is interpreted as current (or torque)

by the 6503 processor and is simply converted into an analog value to be forwarded directly

to the power drive electronics. This mode makes possible the implementation of any joint

control law (e.g. force control and adaptive control) on a remote computer that can inter-

face with the LSI 11/73. In order to implement the adaptive control algorithm, the joint

PID servos provided by the resident Unimation code are in effect disconnected by selection

of the 6503 current mode, and current inputs are supplied directly from the MicroVAX for

driving the robot.

At the intermediate level, the LSI 11/73 executes the _moper" communication monitor

program that transfers data and commands back and forth between the LSI 11/73 and

the MicroVAX II host computer. The interface between the two processors is a DRVll

high-speed parallel link for control communication. The moper program synchronizes the

operation of the entire system as described in the following. A hardware clock located in the

Unimation controller constantly interrupts the LSI 11/73, and at each interrupt, the moper

collects data relating to the robot state, such as joint positions, currents, and arm status,

and transfers it to the MicroVAX via an interrupt. The MicroVAX receives this data and

immediately sends position or current values that have been computed in the previous cycle

by the control code to the LSI 11/73 for execution. Available system sampling time is in

increments of 7 milliseconds, ranging from 7 to 56 milliseconds (18--143 Hz). The sampling

time of 28 milliseconds is best suited for the 6503 position mode and is set as default. In

our adaptive control implementation, the lowest sampling time of 7 milliseconds (143 Hz)

is chosen to obtain the best control performance.

On the MicroVAX, two programs run concurrently: the foreground planning level

(RCCL) and the background control level (RCI). The planning level executes in the fore-

ground in the sense that it interacts with the user and performs high-level computations as

well as communicating with the control level. It has access to standard I/O resources such

as files, devices, and system calls. At this level, the programmer can specify the task in

Cartesian coordinate system in terms of homogeneous transformations and define a robot

end-effector trajectory with a series of via points. Essentially the planning level consists

of task sequencing, motion planning and queueing, and modeling of the world in terms of

homogeneous transformations.

RCI (Robot Control Interface) level executes a series of control routines during each

sampling period to interface in real-time with the robot. In practice, the control level

communicates with the planning level only through global external variables (i.e., shared

memory). Both levels can communicate with the robot through predefined global variables:

"how," that contains information describing the state of the arm, and _chg," that is used

to control the arm. These variables are used for robot control and are usually accessed at

the control level. To meet the constraints imposed by the sampling time in the range of

milliseconds, the control level is executed in the UNIX kernel mode at the highest priority,

which effectively locks out all hardware interrupts. Once initiated, it quickly loads the

memory context of the robot control code, performs I/O with moper, and executes the

15

control code and supporting RCI interfaceroutines. Since the control level is in kernel

mode, itcannot access the usual system callsor I/O facilities.

The RCCL software was originallydesigned to control the robot in the 6503 position

mode (i.e.,with the control action provided at the 6503 joint processor level at 1 KHz

sampling rate). This way the user can concentrate mostly on the programming aspects of

performing a task rather than the real-time control issues.For thispurpose, by default,a

set of standard real-timecontrolroutines isprovided to perform functions such as trajectory

generation, error checking, event synchronization, kinematic computations, and coordina-

tion with the planning level.In order to implement a differentcontrol scheme, however, the

user selectsthe 6503 current mode to drive the robot, which in turn necessitateswriting

control procedures essentiallyto replace the nominal control functions. In addition, the

user must consider meeting his newly imposed sampling time requirement; more often he

wants to lower the sampling time to control the robot more effectively.As a consequence,

smaller and more compact control code must be written to meet the real-timeconstraint.

For example, to implement our adaptive controllerin the sampling rate of 7 milliseconds

(lowest rate availablein RCCL), the need for a trajectory generator is met by writing a

simple cycloidalgenerator that provides smooth seriesof setpoints without added features

such as real-time trajectory modification. In addition, the adaptive control algorithm for

computing the desired motor currents from the observed joint positionsiscoded in itsmost

numerically efficientform.

4. Experimentation with a PUMA 560 Robot

In thissection,the theoreticalresultsoutlined in Section 2 are applied to a six-jointed

PUMA 560 industrialrobot in the testbed facilitydescribed in Section 3.

To test and evaluate the control scheme of Section 2, the adaptive controllersare

implemented on allsixjointsof the PUMA 560 robot. The dynamic model for a typicalith

joint of PUMA can be written as

6

re.CO#,+ + + g,(0)+ : T,
j----1

(12)

where 0 = [01,...,0s] and the terms in equation (12) are highly complicated nonlinear

functions of 0 and 0 as given in [6]. From equation (12), it is seen that the effective inertia

m_(O), the gravity loading 9_(0), and the Coriolis/centrifugal torque n_(O, O) seen at each

joint are nonlinear functions of all six joint angles; i.e., the robot configuration and speed.

Furthermore, there are inertial couplings between joint motions, as indicated by mO-t_ j

terms, with the coupling factors dependent on the robot configuration. In the adaptive

control implementation, the i th joint is controlled independently by the local feedback law

TiCt) = fi(t) + kp, Ct)ei(t) + k,,Ct)_i(t) (13)

16

where e,(t) = Od_(t)-O,(t) is the position tracking-error, Odi(t) is the reference trajectory, and

[f_, kt_,kv¢] are the auxiliary signal, position and velocity feedback gains for the i _h joint,

respectively. It is seen that although the joint dynamics (12) are coupled, the proposed

control scheme (13) is decentralized, i.e., the control torque T_ does not depend on the joint

angle 0j for j # i.

In the experiment on adaptive control of PUMA, the sampling period is chosen as the

smallest possible value T0 = 7 milliseconds (i.e., sampling frequency f, = 143 Hz), since the

on-line computations involved in the adaptive control law (13) are a few simple arithmetic

operations. The adaptation gains in equations (3)-(6) are selected after a few trial-and-errors

as

wpz = 15 , Wvl : I0 , wp2 : 40 , wv2 = 20 , tUp3 : 12 , Wv3 : 4

Wp4 = 3 , wv4 : 2 , wp5 : 3 , wv5 = 2 , wpo = 3 , wv6 = 2 (14)

All joints : _ -- 30,_ = 100, "7 -- 800,p -- _ = A = a = 0

The initial values of all controller gains are chosen as zero, i.e. kv_(0) = kv_(0) : 0 for

i - 1,... ,6. The initial values of the auxiliary signals are chosen as

f2(0) = 12sgn[0d2(r) - 02(0)1 + 1.02sin02(0)

- 8.4 sin[02(0) + 03(0)1- 37.2cos 02(0) Nt.meter

f3(0) = 2sgn[8_(r) -03(0)] + 0.25 cos[02(0) + 83(0)] (15)

- 8.4 sin[02(0) + 03(0)] Nt.meter

fz(O) = h(O)= fs(O)= ,/'6(0)=0

In the above expressions, the first term is chosen empirically to overcome the large stiction

(static friction) present in the joints, and the remaining terms are used to compensate for the

initial gravity loading [6]. It is important to note that friction and gravity compensations

are not used separately in addition to the adaptive controllers, and are used merely as the

initial conditions of the auxiliary signals in order to improve the initial responses of the joint

angles. Furthermore, no information about the PUMA dynamic model or parameter values

is used for implementation of the control scheme.

In the experiment, the PUMA arm is initially at the "zero" position 0(0) = [0, 0, 0, 0, 0, 0]

with the upper arm horizontal and the forearm vertical, forming configuration. All the

six joint angles are then commanded to change simultaneously from the zero positions to the

goal positions 0d(3) = [60 °, --60°,60°,60 °, --60 °, --60 °] in three seconds, and the desired

trajectories Odi(t) are synthesized by a cycloidal trajectory generator software in RCCL.

While the robot is in motion, the readings of the joint encoders at each sampling instant are

recorded directly from the robot, converted into degrees and stored in a data file. Figures

3(i)-(vi) show the desired and actual trajectories of all six PUMA joint angles. It is seen

that each joint angle O_(t) tracks the desired trajectory Oa_(t) very closely despite inter-joint

couplings. The experimental results demonstrate that adaptive independent joint control of

the PUMA robot is feasible, in spite of the static and dynamic couplings between the joints.

* The unit of angle in the control program is "radian," and hence the numerical values

of the adaptation gains are large.

17

5. Conclusions

A decentralized direct adaptive control scheme has been experimentally validated on

a PUMA 560 robot, where each robot joint is controlled independently by a simple local

feedback controller at a high sampling rate. This avoids the computational burden of a

centralized controller, which results in a slower sampling rate and hence degrades the robot

performance. The experimental results demonstrate that accurate trajectory tracking is

achieved by a simple control algorithm, without any knowledge of the complex PUMA

dynamic model.

Adaptive control is particularly useful in applications (such as in space) where the

manipulator has long light-weight arms and handles payloads of unknown and heavy weights.

In such cases, the dynamics of the manipulator is dominated by the inertial terms due to

the payload. The controller adaptation can then compensate for such terms and provide a

stable and consistent performance under gross payload variations.

Finally, it is important to note that the rate of sampling, f,, has a central role in the

performance of any digital control system. In general, the value of f, is dictated largely by

the amount of on-line computations that need to be performed during each sampling period

in order to calculate the required control action. The simplicity of the control scheme

proposed in this paper allows joint servo loops to be implemented with a high sampling

rate, yielding improved tracking performance.

6. Acknowledgement

The research described in this paper was performed at the Jet Propulsion Laboratory,

California Institute of Technology, under contract with the National Aeronautics and Space
Administration.

7. References

1. H. Seraji: "A new approach to adaptive control of manipulators," ASME Journ. Dy-

namic Systems, Measurement and Control, 1987, 109(3), pp. 193-202.

2. H. Seraji: "Adaptive independent joint control of manipulators: Theory and experi-

ment," Proc. IEEE Intern. Conf. on Robotics and Automation, Philadelphia, 1988,

Vol. 2, pp. 854-861.

3. P.A. Ioannou: "Decentralized adaptive control of interconnected systems," IEEE Trans.

Auto. Control, 1986, Vol. AC-31, No. 4, pp. 291-298.

4. V. Hayward and J. Lloyd: "RCCL User's Guide," CVaRL/McGill University, Canada,

April 1984.

5. J. Lloyd: "Implementation of a Robot Control Development Environment," Master's

Thesis, Electrical Engineering Department, McGill University, Canada, 1985.

6. B. Armstrong, O. Khatib, and J. Burdick: "The explicit dynamic model and inertial

parameters of the PUMA 560 arm," Proc. IEEE Intern. Conf. on Robotics and

Automation, San Francisco, 1986, pp. 510-518.

18

+

Odi

PD Feedback ?

kpi(I) + kvi(t) _

Inter-Joint Couplings

1
--4 _--_ Joint i Dynamics

(
Adaptation [fi(t)Laws Auxiliary

Signal

_o i

Figure 1. Decentralized Adaptive Control Scheme for Manipulator Joint i

I

I
NORMAL TIME-

SEARING CONTEXT

I

t

I

NON- INTERRUPTABLE

HIGH-PRIORITY MODE

(NO PAGING OUT)

I

I

F

I

I

I

I

I

36 HZ COI_4U-

NICAT ION RATE

MICROVAX II COMPUTER

UNIMATION CONTROLLER

HIGH-SPEED I/0 INTERFACE

i KHZ COMMUNI-

CATION RATE

I-.

Figure 2. Functional Diagram of Robotic Testbed Facility

| WAIST

+ (_ (JOINT 1)
+ SHOULDER

__ (JOINT 21

U_-.. "_,,. '''_" + ELBOW

_ (JOINT 31

llill " \ \ \ + WRIST BEND

 IiII \\N
.E"_l ; IL _/,'x',_.-_FLANGE

] WRIST ROTATION
' (JOINT 4)

19

7O

_J

==

v

v

=-

60

5O

40

30

20

10

.... 81
- @dl

0 1 2 3

Time (second)

Figure 3(i). Response of Waist Angle 01 under Adaptive Controller

-10

-2O

k,

== -30

•_ -40
CD

-50

-6O

-7O

.... 02

I I I I I

0 1 2

Time (second)

Figure 3(ii). Response of Shoulder Angle 02 under Adaptive Controller

2O

70

;0
QJ

v

60

50

40

30

20

10

.... 03

G

I I I I

0 1 2

Time (second)

Figure 3(iii). Reslxmse of Elbow Angle 03 under Adaptive Controller

70

_o

v

cE)

v

60

50

40

30

20

10

- O4

. .t-'" I I I I

0 1 2 3

Time (second)

Figure 3(iv). Response of Wrist Angle 04 under Adaptive Controller

21

-10

-2O

-30

v

,_ -40

-50

-6O

-7O

". 05

I I I I I

0 1 2

Time (second)

Figure 3(v). Response of Wrist Angle 05 under Adaptive Controller

Q)

v

,J

_D

z.J
v

-10

-2O

-30

-40

-50

-60

-70

"-. O6

d6

I I I I I

0 1 2

Time (second)

Figure 3(vi). Response of Wrist Angle 06 under Adaptive Controller

22

